Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 45, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297327

RESUMEN

Ixodid ticks are distributed across all countries of the Western Balkans, with a high diversity of species. Many of these species serve as vectors of pathogens of veterinary and medical importance. Given the scattered data from Western Balkan countries, we have conducted a comprehensive review of available literature, including some historical data, with the aim to compile information about all recorded tick species and associated zoonotic pathogens in this region. Based on the collected data, the tick fauna of the Western Balkans encompasses 32 tick species belonging to five genera: Ixodes, Haemaphysalis, Dermacentor, Rhipicephalus and Hyalomma. A range of pathogens responsible for human diseases has also been documented, including viruses, bacteria and parasites. In this review, we emphasize the necessity for integrated surveillance and reporting, urging authorities to foster research by providing financial support. Additionally, international and interdisciplinary collaborations should be encouraged that include the exchange of expertise, experiences and resources. The present collaborative effort can effectively address gaps in our knowledge of ticks and tick-borne diseases.


Asunto(s)
Borrelia , Ixodes , Ixodidae , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Peninsula Balcánica , Ixodidae/microbiología , Ixodes/microbiología , Enfermedades por Picaduras de Garrapatas/veterinaria
2.
Viruses ; 15(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140559

RESUMEN

Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.


Asunto(s)
Capripoxvirus , Virus de la Dermatosis Nodular Contagiosa , Infecciones por Poxviridae , Enfermedades de las Ovejas , Vacunas Virales , Ovinos , Bovinos , Animales , Capripoxvirus/genética , Mutación , Genoma Viral , Virus de la Dermatosis Nodular Contagiosa/genética , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/prevención & control , Infecciones por Poxviridae/veterinaria , Vacunas Virales/genética , Enfermedades de las Ovejas/epidemiología , Cabras
3.
J Virol ; 97(11): e0139423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37905838

RESUMEN

IMPORTANCE: Lumpy skin disease virus (LSDV) has a complex epidemiology involving multiple strains, recombination, and vaccination. Its DNA genome provides limited genetic variation to trace outbreaks in space and time. Sequencing of LSDV whole genomes has also been patchy at global and regional scales. Here, we provide the first fine-grained whole genome sequence sampling of a constrained LSDV outbreak (southeastern Europe, 2015-2017), which we analyze along with global publicly available genomes. We formally evaluate the past occurrence of recombination events as well as the temporal signal that is required for calibrating molecular clock models and subsequently conduct a time-calibrated spatially explicit phylogeographic reconstruction. Our study further illustrates the importance of accounting for recombination events before reconstructing global and regional dynamics of DNA viruses. More LSDV whole genomes from endemic areas are needed to obtain a comprehensive understanding of global LSDV dispersal dynamics.


Asunto(s)
Genoma Viral , Dermatosis Nodular Contagiosa , Virus de la Dermatosis Nodular Contagiosa , Animales , Bovinos , Brotes de Enfermedades , ADN Viral/genética , Europa (Continente)/epidemiología , Dermatosis Nodular Contagiosa/epidemiología , Dermatosis Nodular Contagiosa/virología , Virus de la Dermatosis Nodular Contagiosa/genética , Filogenia
4.
Front Vet Sci ; 10: 1112850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761884

RESUMEN

Introduction: African swine fever (ASF) is a contagious viral disease of pigs and wild boar that poses a major threat to the global swine industry. The genotype II African swine fever virus (ASFV) entered the European Union (EU) in 2014 and since then fourteen countries have been affected, Italy and North Macedonia being the last in 2022. While whole genome sequencing remains the gold standard for the identification of new genetic markers, sequencing of multiple loci with significant variations could be used as a rapid and cost-effective alternative to track outbreaks and study disease evolution in endemic areas. Materials and methods: To further our understanding of the epidemiology and spread of ASFV in Europe, 382 isolates collected during 2007 to 2022 were sequenced. The study was initially performed by sequencing the central variable region (CVR), the intergenic region (IGR) between the I73R and I329L genes and the O174L and K145R genes. For further discrimination, two new PCRs were designed to amplify the IGR between the 9R and 10R genes of the multigene family 505 (MGF505) and the IGR between the I329L and I215L genes. The sequences obtained were compared with genotype II isolates from Europe and Asia. Results: The combination of the results obtained by sequencing these variable regions allowed to differentiate the European II-ASFV genotypes into 24 different groups. In addition, the SNP identified in the IGR I329L-I215L region, not previously described, grouped the viruses from North Macedonia that caused the 2022 outbreaks with viruses from Romania, Bulgaria, Serbia and Greece, differentiating from other genotype II isolates present in Europe and Asia. Furthermore, tandem repeat sequence (TRS) within the 9R-10R genes of the multigene family 505 (MGF505) revealed eight different variants circulating. Discussion: These findings describe a new multi-gene approach sequencing method that can be used in routine genotyping to determine the origin of new introductions in ASF-free areas and track infection dynamics in endemic areas.

5.
Microbiol Spectr ; : e0260022, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815788

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread tick-borne zoonotic virus that causes Crimean-Congo hemorrhagic fever (CCHF). CCHF is asymptomatic in infected animals but can develop into severe illness in humans, with high case-fatality rates. Due to complex environmental and socio-economic factors, the distribution of CCHFV vectors is changing, leading to disease occurrence in previously unaffected countries. Neither an effective treatment nor a vaccine has been developed against CCHFV; thus, surveillance programs are essential to limit and control the spread of the virus. Furthermore, the WHO highlighted the need of assays that can cover a range of CCHFV antigenic targets, DIVA (differentiating infected from vaccinated animals) assays, or assays for future vaccine evaluation. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies in ruminants to three recombinantly produced CCHFV proteins: the nucleocapsid (N) protein and two glycoproteins, GN ectodomain (GNe), and GP38. This triplex assay was used to assess the antibody response in naturally infected animals. Out of the 29 positive field sera to the N protein, 40% showed antibodies against GNe or GP38, with 11 out of these 12 samples being positive to both glycoproteins. To determine the diagnostic specificity of the test, a total of 147 sera from Spanish farms free of CCHFV were included in the study. This multiplex assay could be useful to detect antibodies to different proteins of CCHFV as vaccine target candidates and to study the immune response to CCHFV in infected animals and for surveillance programs to prevent the further spread of the virus. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) causes Crimean-Congo hemorrhagic fever, which is one of the most important tick-borne viral diseases of humans and has recently been found in previously unaffected countries such as Spain. The disease is asymptomatic in infected animals but can develop into severe illness in humans. As neither an effective treatment nor a vaccine has been developed against CCHFV, surveillance programs are essential to limit and control the spread of the virus. In this study, a multiplex assay detecting antibodies against different CCHFV antigens in a single sample and independent of the ruminant species has been developed. This assay could be very useful in surveillance studies, to control the spread of CCHFV and prevent future outbreaks, and to better understand the immune response induced by CCHFV.

6.
Microorganisms ; 10(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36296232

RESUMEN

Sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD) are economically significant pox diseases of ruminants, caused by sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively. SPPV and GTPV can infect both sheep and goats, while LSDV mainly affects cattle. The recent emergence of LSD in Asia and Europe and the repeated incursions of SPP in Greece, Bulgaria, and Russia highlight how these diseases can spread outside their endemic regions, stressing the urgent need to develop high-throughput serological surveillance tools. We expressed and tested two recombinant truncated proteins, the capripoxvirus homologs of the vaccinia virus C-type lectin-like protein A34 and the EEV glycoprotein A36, as antigens for an indirect ELISA (iELISA) to detect anti-capripoxvirus antibodies. Since A34 outperformed A36 by showing no cross-reactivity to anti-parapoxvirus antibodies, we optimized an A34 iELISA using two different working conditions, one for LSD in cattle and one for SPP/GTP in sheep and goats. Both displayed sound sensitivities and specificities: 98.81% and 98.72%, respectively, for the LSD iELISA, and 97.68% and 95.35%, respectively, for the SPP/GTP iELISA, and did not cross-react with anti-parapoxvirus antibodies of cattle, sheep, and goats. These assays could facilitate the implementation of capripox control programs through serosurveillance and the screening of animals for trade.

8.
Front Vet Sci ; 8: 688078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395571

RESUMEN

The COST action "Standardising output-based surveillance to control non-regulated diseases of cattle in the European Union (SOUND control)," aims to harmonise the results of surveillance and control programmes (CPs) for non-EU regulated cattle diseases to facilitate safe trade and improve overall control of cattle infectious diseases. In this paper we aimed to provide an overview on the diversity of control for these diseases in Europe. A non-EU regulated cattle disease was defined as an infectious disease of cattle with no or limited control at EU level, which is not included in the European Union Animal health law Categories A or B under Commission Implementing Regulation (EU) 2020/2002. A CP was defined as surveillance and/or intervention strategies designed to lower the incidence, prevalence, mortality or prove freedom from a specific disease in a region or country. Passive surveillance, and active surveillance of breeding bulls under Council Directive 88/407/EEC were not considered as CPs. A questionnaire was designed to obtain country-specific information about CPs for each disease. Animal health experts from 33 European countries completed the questionnaire. Overall, there are 23 diseases for which a CP exists in one or more of the countries studied. The diseases for which CPs exist in the highest number of countries are enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis, bovine viral diarrhoea and anthrax (CPs reported by between 16 and 31 countries). Every participating country has on average, 6 CPs (min-max: 1-13) in place. Most programmes are implemented at a national level (86%) and are applied to both dairy and non-dairy cattle (75%). Approximately one-third of the CPs are voluntary, and the funding structure is divided between government and private resources. Countries that have eradicated diseases like enzootic bovine leukosis, bluetongue, infectious bovine rhinotracheitis and bovine viral diarrhoea have implemented CPs for other diseases to further improve the health status of cattle in their country. The control of non-EU regulated cattle diseases is very heterogenous in Europe. Therefore, the standardising of the outputs of these programmes to enable comparison represents a challenge.

9.
Transbound Emerg Dis ; 68(3): 1229-1239, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32767820

RESUMEN

Numerous infectious diseases impacting livestock impose an important economic burden and in some cases also represent a threat to humans and are classified as zoonoses. Some zoonotic diseases are transmitted by vectors and, due to complex environmental and socio-economic factors, the distribution of many of these pathogens is changing, with increasing numbers being found in previously unaffected countries. Here, we developed a multiplex assay, based on a suspension microarray, able to detect specific antibodies to five important pathogens of livestock (three of them zoonotic) that are currently emerging in new geographical locations: Rift Valley fever virus (RVFV), Crimean-Congo haemorrhagic fever virus (CCHFV), Schmallenberg virus (SBV), Bluetongue virus (BTV) and the bacteria complex Mycobacterium tuberculosis. Using the Luminex platform, polystyrene microspheres were coated with recombinant proteins from each of the five pathogens. The mix of microspheres was used for the simultaneous detection of antibodies against the five corresponding diseases affecting ruminants. The following panel of sera was included in the study: 50 sera from sheep experimentally infected with RVFV, 74 sera from calves and lambs vaccinated with SBV, 26 sera from cattle vaccinated with Mycobacterium bovis, 30 field sera from different species of ruminants infected with CCHFV and 88 calf sera infected with BTV. Finally, to determine its diagnostic specificity 220 field sera from Spanish farms free of the five diseases were assessed. All the sera were classified using commercial ELISAs specific for each disease, used in this study as the reference technique. The results showed the multiplex assay exhibited good performance characteristics with values of sensitivity ranging from 93% to 100% and of specificity ranging from 96% to 99% depending on the pathogen. This new tool allows the simultaneous detection of antibodies against five important pathogens, reducing the volume of sample needed and the time of analysis where these pathogens are usually tested individually.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Anticuerpos Antivirales/sangre , Mycobacterium tuberculosis/inmunología , Infecciones por Virus ARN/veterinaria , Virus ARN/inmunología , Rumiantes/inmunología , Pruebas Serológicas/veterinaria , Tuberculosis/veterinaria , Animales , Virus de la Lengua Azul/inmunología , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Infecciones por Virus ARN/diagnóstico , Infecciones por Virus ARN/epidemiología , Fiebre del Valle del Rift/diagnóstico , Fiebre del Valle del Rift/epidemiología , Virus de la Fiebre del Valle del Rift/inmunología , Rumiantes/virología , Ovinos/inmunología , Enfermedades de las Ovejas/diagnóstico , Enfermedades de las Ovejas/epidemiología , Tuberculosis/diagnóstico , Tuberculosis/epidemiología , Zoonosis
10.
Transbound Emerg Dis ; 68(2): 220-223, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33108681

RESUMEN

Bluetongue virus serotype 4 (BTV-4) was confirmed in sheep in North Macedonia in July 2020. The full genome of this BTV-4 strain (MKD2020/06) was shown to be most closely related (99.74% nt identity) to the Greek GRE2014/08 and the Hungarian HUN1014 strains, indicating the re-emergence of this BTV serotype in the Balkan region since it was last reported in 2017.


Asunto(s)
Virus de la Lengua Azul/fisiología , Lengua Azul/epidemiología , Brotes de Enfermedades/veterinaria , Enfermedades de las Ovejas/epidemiología , Animales , Lengua Azul/virología , Virus de la Lengua Azul/genética , República de Macedonia del Norte/epidemiología , Serogrupo , Ovinos , Enfermedades de las Ovejas/virología , Oveja Doméstica
11.
PLoS One ; 15(9): e0239478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986725

RESUMEN

Rift Valley fever (RVF) is an arboviral zoonosis that primarily affects ruminants but can also cause illness in humans. The increasing impact of RVF in Africa and Middle East and the risk of expansion to other areas such as Europe, where competent mosquitos are already established, require the implementation of efficient surveillance programs in animal populations. For that, it is pivotal to regularly assess the performance of existing diagnostic tests and to evaluate the capacity of veterinary labs of endemic and non-endemic countries to detect the infection in an accurate and timely manner. In this context, the animal virology network of the MediLabSecure project organized between October 2016 and March 2017 an external quality assessment (EQA) to evaluate the RVF diagnostic capacities of beneficiary veterinary labs. This EQA was conceived as the last step of a training curriculum that included 2 diagnostic workshops that were organized by INIA-CISA (Spain) in 2015 and 2016. Seventeen veterinary diagnostic labs from 17 countries in the Mediterranean and Black Sea regions participated in this EQA. The exercise consisted of two panels of samples for molecular and serological detection of the virus. The laboratories were also provided with positive controls and all the kits and reagents necessary to perform the recommended diagnostic techniques. All the labs were able to apply the different protocols and to provide the results on time. The performance was good in the molecular panel with 70.6% of participants reporting 100% correct results, and excellent in the serological panel with 100% correct results reported by 94.1% of the labs. This EQA provided a good overview of the RVFV diagnostic capacities of the involved labs and demonstrated that most of them were able to correctly identify the virus genome and antibodies in different animal samples.


Asunto(s)
Fiebre del Valle del Rift/diagnóstico , Animales , Mar Negro , Culicidae , Europa (Continente) , Genoma Viral , Humanos , Laboratorios , Mar Mediterráneo , Fiebre del Valle del Rift/virología , Virus de la Fiebre del Valle del Rift/genética , Rumiantes
12.
PLoS Negl Trop Dis ; 9(3): e0003519, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25742017

RESUMEN

BACKGROUND: There are only few assays available for the detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)-specific antibodies in animals, and data about diagnostic sensitivity and specificity are incompletely documented for most of these tests. This is unfortunate since CCHFV antibodies in animals can be used as indicator for virus circulation in a geographic area and therewith potential risk of human exposure. This paper therefore reports on a novel ELISA for the detection of CCHFV-specific antibodies in cattle and on its application for testing ruminant sera from the Former Yugoslav Republic of Macedonia. PRINCIPAL FINDINGS: A highly sensitive and specific ELISA was developed to detect CCHFV-specific IgG antibodies in cattle. The assay was validated by using 503 negative serum samples from a country where CCHFV has never been detected until now, and by using 54 positive serum samples. The positive sera were verified by using two commercially available assays (for testing human serum) which we have adapted for use in animals. The sensitivity of the novel ELISA was 98% and its specificity 99%. The presence of Hyalomma ticks was demonstrated in the Former Yugoslav Republic of Macedonia and depending on the region antibody prevalence rates up to 80% were detected in the cattle population. CONCLUSION: This article describes a fully validated, highly sensitive and specific ELISA for the detection of CCHFV-specific IgG antibodies in cattle. Using this assay, CCHFV-specific antibodies were detected for the first time in cattle in the Former Yugoslav Republic of Macedonia, giving evidence for an active circulation of this virus in the country. Supporting this conclusion, the occurrence of the main vector of CCHFV was demonstrated in the present work for the first time in Former Yugoslav Republic of Macedonia.


Asunto(s)
Bovinos/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Animales , Anticuerpos Antivirales/sangre , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/epidemiología , Humanos , Inmunoglobulina G/sangre , Masculino , República de Macedonia del Norte/epidemiología , Garrapatas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...